

Reliability Challenges for the Utilization of Non-Volatile Memories in Space Systems

11/15/2000

Sammy Kayali

Manager

Electronic Parts Engineering Office
Jet Propulsion Laboratory
California Institute of Technology

Tel. (818) 354-6830

Email:Sammy.A.Kayali@jpl.nasa.gov

Acknowledgement

The work described in this presentation was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

Overview

- New system designs and performance requirements dictate the need to utilize high density memory devices.
- Power constraints necessitate the utilization of very low power electronics and retention of memory with no power
- The environmental requirements dictate the need to utilize radiation tolerant memory devices.
- Space systems must satisfy stringent reliability requirements
- Non-volatile memory technologies can provide promising solutions to address these issues

Current Challenges

Technical challenges

- Smaller feature sizes and miniaturization
- Low power devices and processes
- Device complexity
- Radiation Tolerance of commercial Processes

Environmental challenges

- Operation at extreme temperatures
- Reduction in mass and volume
- New radiation effects and high radiation environments

■ Programmatic challenges

- Fast, better, cheaper missions
- 1/2 the cycle time, 2/3 the cost

Industry challenges

- * Diminishing Hi-Rel suppliers
- Lack of supporting military infrastructure and standards
- Procurements for small volumes undesirable

Current scientific trends

- Experimenters needs set demands
 - Memory demands will increase
 - X2000 has 128 Mbytes per NVM slice
 - Missions will need faster processing
 - Memory will have to run faster and longer
 - Mission targets will become more remote or harder to attain
 - Pluto-Kuiper Express
 - Mars sample return

Reliability Challenges for the Utilization of Non-Volatile Memories in Space System

Changing Applications for NVM

- Long term retention
 - Missions will last >10 years
 - X2000 / PKE
- High endurance
 - Vehicle turned on rarely and exercised heavily
 - X2000 / Deep Impact
- Extreme thermal effects
 - Extreme temperatures
 - Prompt cycling between extremes
- Strict mission parameters
 - Low power
 - Low mass
 - High density
 - High data integrity
- Synergistic effects a factor

NVM Types

- Charge Trapping
 - Floating Gate**
 - Dielectric Trapping
- Field Polarization
 - Magnetic
 - Electric**
- Phase Change
 - Chalcogenide
 - Anti-Fuse Technologies**
- Circuit Based
 - Battery Backed-up SRAM **

Floating Gate Structures

- Based on the movement of electrons into and out of an isolated polysilicon structure "floating gate".
- Floating gate modulates the current flow through an associated FET
- Programming stores charge on floating gate
- Floating gate controls voltage threshold in transistor
- Can store more than one bit of information per transistor
- Electrical erase and write available

Floating Gate Reliability

- Trap-up
 - Increase in voltage required to program/erase due to cycling
 - Can be enhanced due to radiation damage
- Charge pump degradation
 - Increase in leakage current and timing failure
- Time dependant dielectric breakdown
- Retention
 - 10 yr. retention at 25C
 - 135C retention down to 1 year

Floating Gate - Radiation Characteristics

- Total Ionizing Dose Effects
 - Failures at 10krad levels due to charge pump mechanism
 - Failures at 50krad levels due to read sense amp
 - Failures at 100krad levels due to FG erasure
 - ELDRS may be a factor

TID effect on time to program for various charge pump configurations.

TID results for the Intel 64-Mb flash evaluated in read motio.

Floating Gate - Radiation Characteristics

- Single Event Latchup
 - Devices are very susceptible
- Single Event Upset
 - Single cell designs are mostly immune
 - Multi-level designs are susceptible
 - Buffers and registers are very susceptible

Device irradiated with lodine (LET = 60 MeV-cm²/mg)

Single event read errors for the Intel 64Mb flash memory.

Single event upset cross-section for the 528-byte buffer register of the Samsung 128Mb flash.

FeRAM Structures

- Utilize the bi-stable state of ferroelectric materials
- Apply external voltage to flip state
- Various materials have been utilized
 - SBT (SrBi₂Ta₂O₉)
 - PZT (PbZr_xTi_{1-x}O₃)
- Destructive readout (DRO) in 1T/1C design requires another cycle to rewrite

Cross Section of FeRAM Cell Source: Radiant Technologies, Inc.

FeRAM Reliability

- Fatigue
 - Gradual Loss of remnant polarization due to wear
- Aging
 - Degradation of parameters with time
- Time Dependant Dielectric Breakdown (TDDB)
- Imprint
 - Ferroelectric develops preference for state if left in state for long period
- Relaxation Phenomenon
 - Increase in time required for state settling after continuous cycling
- High temperature will wipe memory
- Hysteresis threshold shift in 1T/1C
 - The polarization will shift with use causing threshold to be outside sense amp range

Oxidation of TiN barrier layer INOSTEK Inc.

P-V hysteresis of Pt/PZT/INOSTEK/Pt/TiN INOSTEK Inc.

FeRAM Radiation Characteristics

- Total Ionizing Dose
 - CMOS supporting circuitry show failures at about 25krad
 - ELDRS may be a factor for peripheral circuitry
 - Some reliability issues are accelerated with radiation
- Single Event Latchup
 - Devices are very susceptible
- Single Event Upset
 - Cells appear immune
 - DRO may increase miswrite cross section

Magneto-resistive Memory (MRAM)

- Uses Anti-parallel Magnetic Fields to Limit Current in Cell
 - Electron spin scattering
 - 1T/1C possible
 - DRO and non-DRO
- High permutation of cell structures and approaches
 - MRAM
 - SDT
 - Spin Valve
 - Pseudo-Spin Valve

NVE Inc.

MRAM Reliability

- No devices available to test
 - Reliable survey limited
- High temperature should affect memory
- Hysteresis threshold shift in 1T/1C

MRAM Radiation Effects

- CMOS presents usual problems
 - SEL
 - Leakage
- Interface issues
 - Displacement damage
- Field Issues
 - EMP

Phase Change Memories

Anti-Fuse

- Alters resistance of current path
- One time program
- Alpha-Silicon, Alpha-Carbon or ONO

Chalcogenide

- Alters Resistance of current path in material
- Provides for ~10² change in resistance
- Provides High rewrite
- New Technology

Phase change process ECD, Inc.

Phase Change Memories

Chalcogenide Reliability

■ Limited reliability data is available on Chalcogenide memory devices

Antifuse Reliability

- On State Breakdown Reliability
 - Current stress on programmed state leads to open circuit
 - MTTF ~ 1/V
- Off State Switching
 - Inadvertent switching from programmed state to non programmed state due to high field

Rewrite cycles for Chalcogenide memory ECD, Inc.

Phase Change Memories

Chalcogenide Radiation Characteristics

- No commercial product has been available for test
- CMOS structures are expected to suffer typical leakage current degradation
- Devices expected to be susceptible to Single Event latchup and Upset due to CMOS support circuitry
- Current dependence of read and write mode may lead to enhanced radiation sensitivity

Anti-Fuse Radiation Characteristics

- Commercial CMOS Structure is expected to suffer typical leakage current degradation
- Rad hard and Rad tolerant device are available
- Un-programmed and partially programmed anti-fuse resistance is expected to increase under biased irradiation
- Devices expected to be susceptible to Single Event latchup and Upset

Summary

- New space systems require the utilization of high density memory devices with proven reliability
- Current commercial technologies do not satisfy the density, radiation tolerance, or endurance requirements for space applications
- FeRAM technology appears the most promising in the near term
- Chalcogenide memory device technologies offer great potential for low power operation and radiation tolerance, but requires further development.
- MRAM still under development

Current Status of NVM

	FeRAM	MRAM	FLASH	EPRPOM	C-RAM	SRAM	DRAM	IDEAL
Non-Volatile	Yes	Yes	Yes	Yes	Yes	No	No	Yes
Power Consumption	Low	Low	Med	Med	Med(?)	Med	High	Low
Stand-by								
Power Consumption	Low	Low	High	High	Low	Med	High	Low
Operating					The second second			
Write Speed	<150ns	$<1\mu_{\rm S}(?)$	$>10\mu_{\rm S}$	<10µs	<60ns(?)	<10ns	<60ns	<60ns
Erase Speed	<150ns	$<1\mu_{s}(?)$	>10ms	>10s	<60ns(?)	<10ns	<60ns	<60ns
Write Voltage	~2-5V	~2-5V	>12V	>12V	~2-5V	~2-5V	~2-5V	~2-5V
Endurance	10 ¹²	10 ¹⁰	10 ⁶	103	10^{13}	10 ¹⁵	1015	10 ¹⁵
Read threshold	~50 mV	≈5 mV	5 V	5 V	N/A	5V	5 V	~1 V
Cost/Bit	High	High	Med	Med	High	Med	Low	Low
Scale(Bits/Dev)	10^4	104	108	103	10'	10′	108	109
SEU susceptible (bit)	No	No	Yes	No	No?	Yes	Yes	No
SEU susceptible (periph)	Probably	Probably	Yes	No	Yes?	Yes	Yes	No
SEL susceptible	Yes	Probably	Yes	Yes	Yes?	Yes	Yes	No
TID krad(Si)	20	N/A	10	100	• • N/A	100	100	1000
Retention 25C (Yr.)	>10	>10	<u> </u>	10	>10	0	0	>10
Retention 170C (Yr.)	0	N/A	1	1/1	>10	0	0	>10
Space worthy	Marginal	Maybe	Marginal	No	Maybe	N/A	N/A	Yes